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Dynamics of traffic flow with real-time traffic information
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We studied dynamics of traffic flow with real-time information provided. Provision of the real-time traffic
information based on advancements in telecommunication technology is expected to facilitate the efficient
utilization of available road capacity. This system has a potentiality of not only engineering for road usage but
also the science of complexity series. In the system, the information plays a role of feedback connecting
microscopic and macroscopic phenomena beyond the hierarchical structure of statistical physics. In this paper,
we tried to clarify how the information works in a network of traffic flow from the perspective of statistical
physics. The dynamical feature of the traffic flow is abstracted by a contrastive study between the nonequilib-
rium statistical physics and a computer simulation based on cellular automaton. We found that the information
disrupts the local equilibrium of traffic flow by a characteristic dissipation process due to interaction between
the information and individual vehicles. The dissipative structure was observed in the time evolution of traffic
flow driven far from equilibrium as a consequence of the breakdown of the local-equilibrium hypothesis.
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I. INTRODUCTION

Statistical physics is being applied to complex syste
such as many-body problems outside the traditional dom
of physical systems, e.g., biological and social sciences
these applications, vehicular traffic has been studied for
most half a century in order to understand its unique p
nomena. Theoretical analysis and computer simulation fr
the perspective of statistical physics not only provide fun
mental aspects, but also support a better understanding o
complex phenomena observed in real traffic@1–3#. Further-
more, it is worthy of attention that these benefits in the stu
of vehicular traffic offer the possibility of understanding th
various fundamental aspects of dynamics of truly noneq
librium systems. In this paper, we study dynamics of tra
flow with information provided, which brings about a diffe
ent kind of aspect in statistical physics.

Statistical physics provides us two main—but different
concepts for modeling vehicular traffic as a nonequilibriu
system. One is a macroscopic approach based on a fl
dynamical description. In this framework, traffic is viewed
compressible fluid formed by vehicles that do not app
explicitly @4–6#. The other concept is a microscopic a
proach, where each vehicle is represented by interacting
ticles@7–15#. We can generally distinguish these framewor
from their characteristic scales in space and time. For
ample, the characteristic scale in the fluid-dynamical desc
tion corresponds to the wavelength~or frequency! of com-
pression waves driven in traffic flow. In contrast, t
characteristic scale in the microscopic description is given
headway distance, which is interpreted as the mean free
determined in the traditional kinetic theory of gases. In g
eral, the ratio of the characteristic scale plays the role o
small expansion parameter to distinguish different
proaches as stated above, and gives us validity of appr
mation schemes of analytical calculation. A hierarchi
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structure constructed by these characteristic scales is a u
concept in statistical physics for understanding comp
natural phenomena.

This paper seeks to understand the dynamic relation
tween traffic flow and information from the perspective
statistical physics. This may provide interesting dynam
beyond the hierarchy in statistical physics, as well as a s
driven far from equilibrium. Recently, increasing traffic co
gestion, especially in cities, underscores the importance
efficiently utilizing the available road capacity. Provision
real-time traffic information based on advancements in te
communication technology is expected to improve the imb
ance of traffic flow distribution in the road network. Th
system comprises three phases in real time: collection of
servable quantities measured by roadside facilities, proc
ing of collected data, and provision of traffic informatio
However, providing real-time information may have an a
verse effect, such as causing over-reaction and concentra
even though it is meant to benefits such as to bring ab
efficient distribution of vehicles@16–21#. When real-time in-
formation is provided, a greater number of drivers will te
to concentrate on a recommended route, and consequ
generate oscillations in road usage. As a result, the stat
vehicular traffic is driven far from equilibrium, where a re
sponse feature of traffic flow based on many-body effe
plays an important role.

To model traffic flow provided with real-time traffic infor
mation, it is essential to express the instantaneous circula
of information throughout the system. In the system, c
following behavior and route decision at an intersection
microscopic phenomena, spread throughout the whole s
of traffic flow as macroscopic phenomena, e.g., average
locity through the medium of traffic information. This sug
gests that traffic information plays a role of feedback th
connects the microscopic and the macroscopic phenom
beyond the hierarchical structure of statistical physics.

In order to study the dynamics of the system, we sho
first describe traffic flow by the microscopic framework th
represents the interacting vehicles. There are mainly th
©2004 The American Physical Society21-1
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different microscopic frameworks for modeling vehicul
traffic: the kinetic theory, the car-following theory, and th
particle-hopping theory.

In the kinetic theory, the probabilistic description of v
hicular traffic is developed on the analogy of the kine
theory of gases, where traffic is treated as gas of interac
particles@7–15#. In this framework, the time evolution of th
distribution function of vehicles is given by the Boltzman
like equation, where the correlation between a leading
hicle and a following one is almost negligible. Therefore, t
one-particle distribution function is valid in a scale of th
headway distance, namely, the mean free path.

In the car-following theory@22#, a deterministic descrip
tion of the motion of individual vehicles is provided by th
principles of Newtonian dynamics. In this formulation, th
potential energy between vehicles is originated by the stim
lus every vehicle receives. The stimulus consists of the
ternal force due to environment, e.g., geometry of a road
well as the interaction with all the other vehicles in the s
tem. In general, the stimulus can be expressed by the f
tion of the speed of the vehicle, the difference in the spe
of the following vehicle and its leading one, the distanc
headway, etc.

In the particle-hopping theory, traffic flow is described
the stochastic dynamics of individual vehicles, which is u
ally formulated by the cellular automata~CA! @23–26#. The
CA model is ideal for an efficient large-scale computer sim
lation owing to discretization of position, speed, accele
tion, and time. The discretization provides us not only co
putational efficiency but also an effective aspect of
dynamics of vehicular traffic, where a characteristic dissi
tion process of the car-following behavior is reduced to
hopping dynamics of particles on lattice sites. Moreover,
results of a computer simulation based on the CA model
been tried to compare with not only theoretical analysis~e.g.,
Burger’s equation interpreted by the ultradiscretizat
@27,28#!, but also with empirical results from real vehicul
traffic @29–37#.

In this paper, we first study the dynamics of traffic flo
under the provision of real-time information by means of t
computer simulation based on the CA model. Next, we a
lyze the system theoretically from the perspective of n
equilibrium statistical physics. In the analysis, we apply
kinetic theory to the system. The results of the theoret
analysis are compared with those obtained from the c
puter simulations based on the CA model. In the above ch
of analysis, we find that the computer simulation enables
to abstract characteristic features of the system as well a
examine validity of the approximation scheme of the anal
cal calculations.

This paper is organized as follows. Section II describ
the equation of motion of traffic flow conforming to CA
Section III presents the time evolution of traffic flow. Secti
IV analyzes the time dependence of traffic flow from t
perspective of nonequilibrium statistical physics. Finally, t
paper concludes with Sec. V.

II. EQUATION OF MOTION

This section introduces an equation of motion of the C
that moves on a couple of single-lane crossings in one in
01612
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section, as described in Fig. 1. Distribution of vehicles of
i th lattice site on routel ( l 51 or 2! at timet is expressed by
a binary array,lm i(t)5$0,1%. In the CA complying with the
rule 184@23#, the variable takes onlm i(t)50 when a lattice
site is empty andlm i(t)51 when a lattice site is occupied
At each discrete time step,t→t11, an arbitrary arrangemen
of vehicles is updated synchronously as follows:

Xi~ t11!5H Mi~ t !Yi~ t ! otherwise

Mi~ t !Fi~ t ! for i 5m

Mi~ t !Gi~ t ! for i 5m11.

~2.1!

The equation of motion in each route is given by a diago
part of Eq.~2.1! as follows:

1m i~ t !5„Xi~ t !…11,

2m i~ t !5„Xi~ t !…22. ~2.2!

The upper of the Eq.~2.1! represents the motion of CA
except for lattice sites around the intersection. The mid
and lower of the Eq.~2.1! represent the motion of CA im
mediately before (i 5m) and after (i 5m11) the intersec-
tion. The equations describe the behavior of drivers at
intersection in which drivers decide a route based on re
time traffic information, illustrated in Fig. 1.

The matrices on the right-hand side of Eq.~2.1! are given
by the binary arraylm i(t) as follows:

Mi~ t !5S 1m i~ t ! 1 m i~ t !
2m i~ t ! 2 m i~ t !

D , ~2.3!

Yi~ t !5S 1m i 11~ t ! 2m i 11~ t !
1m i 21~ t ! 2m i 21~ t !

D , ~2.4!

FIG. 1. An outline of the simulation model. At the intersectio
each driver decides on a route from the information constantly p
vided by a road side facility.
1-2
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Fi~ t !5S 1f i 11~ t ! 2f i 11~ t !
1m i 21~ t ! 2m i 21~ t !

D , ~2.5!

Gi~ t !5S 1m i 11~ t ! 2m i 11~ t !
1gi 21~ t ! 2gi 21~ t !

D , ~2.6!

1f i~ t !51m i~ t !1j12m i~ t !1j ,

2f i~ t !51m i~ t !2j 12m i~ t !2j,

1gi~ t !51m i~ t !1j12m i~ t !2j ,

2gi~ t !51m i~ t !1j 12m i~ t !2j. ~2.7!

Here, lm i(t)512 lm i(t) and lj512 lj. In the equations
above, lm i 11(t) @ lm i 21(t)# means distribution of an adja
cent lattice site in the moving direction~opposite direction!.
Incidentally, calculations in the equations are dealt with
cording to the logical operation.

In Eq. ~2.7!, lj is a coefficient that determines wheth
the CA keeps or changes a route; the CA keeps a route
lj51, and changes to another route forlj50, as shown in
Eq. ~2.8!.

lj5H 1 keep a route

0 change a route.
~2.8!

The coefficient lj is decided by the traffic information. In
this paper, we assume all drivers to be utilizing the tra
information provided at the intersection.

A word of caution is in order here. We permit only on
vehicle to advance when two vehicles select the same la
site at the intersection illustrated in Fig. 2. We give each
the two vehicles from different routes the same probabil
0.5, in order to avoid concurrent occupancy of a lattice s

On each route withL lattice sites, CA has the following
periodic boundary conditions:

lmL11~ t !5 lm1~ t !. ~2.9!

This therefore assures conservation of the total number o
CA on two routes.

FIG. 2. The arrangement of vehicles in a concurrent occupa
case. Each vehicle advances at the probability 0.5.
01612
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The simulation model complying with Eqs.~2.1!–~2.9!
can be described diagrammatically in Fig. 3, where the b
ken line represents an intersection and the arrows indica
moving direction of vehicles. At the intersection vehicl
jump to another end of the broken line to keep their ro
while they pass the broken line to change their route.

Before concluding this section, we would like to intro
duce some quantities observed in the system. Average ve
ity v̄ l(t) is defined as

v̄ l~ t !5
nl

a~ t !

nl~ t !
, ~2.10!

wherenl
a(t) is the number of vehicles that advance att, and

nl(t) is the total number of vehicles on the routel. The
vehicle density on routel is defined as

r l~ t !5
nl~ t !

Ll
, ~2.11!

where Ll is the number of lattice sites on routel. In the
simulation, we adopted the size of the two routes asL1
5 L25L (L5500).

III. SIMULATION OF RELAXATION PROCESS

In this section, we simulated traffic flow with real-tim
information provided. We adopted the information consisti
of average velocity. For comparison, we also studied the t
fic flow when a driver decided on a route randomly witho
any information. In the following simulation, we show th
time dependence of average velocity and that of vehicle d
sity on each route.

A. Provision of average velocity information

To provide real-time information based on average vel
ity, the coefficient at timet, lj v̄(t), is described byu func-
tion as follows:

lj v̄~ t !5u@ v̄ l~ t !2 v̄ l 8~ t !#. ~3.1!

y

FIG. 3. A diagram of the simulation model. The broken lin
represents an intersection. Vehicles run following the arrows. At
intersection vehicles jump to another end of the broken line to k
their route while they pass the broken line to change their rout
1-3
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YASUSHI YOKOYA PHYSICAL REVIEW E 69, 016121 ~2004!
This equation indicates that a driver selects a routel when
the average velocity exceeds that of another routel 8.

Figures 4~a! and 4~b! illustrate the time dependence o
average velocityv̄ l(t) and that of vehicle densityr l(t) for an
initial vehicle density in each route ofr150.166 andr2
50.960. In these figures, the broken line represents an e
librium distribution of vehicles, withv̄eq50.776 at r tot
50.563, which is given by the following equation:

v̄eq5H 1, 0<r tot<0.5,

12r tot

r tot
, 0.5<r tot<1.

~3.2!

Here, the total vehicle densityr tot is given as follows:

r tot5

(
l 51,2

nl

(
l 51,2

Ll

. ~3.3!

Equation~3.2! represents the phase transition from free fl
to congestion flow when the system is half-filled,r tot50.5.

The broken line represents the total vehicle densityr tot in
Fig. 4 ~b!. We found chaotic oscillation in the simulatio
results ofv̄ l(t) andr l(t). The complex structures in the tim
evolution, v̄ l(t) andr l(t), are caused by a concentration
vehicles that rush for a route recommended by the tra
information. The average velocityv̄ l(t) continues to vibrate
with large amplitude and does not appear to converge, e
for an intermediate density of vehicles (r tot50.563). In par-

FIG. 4. Time dependence of average velocity~a! and vehicle
density~b! on each route with real-time information provided. Th
initial density of vehicles on each route is 0.166 and 0.960. T
broken lines represent the average velocity and the vehicle de

in equilibrium state:v̄eq50.776,r tot50.563. The log is to the bas
10.
01612
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ticular, we can confirm in the result ofr l(t) @Fig. 4~b!# that
the vehicle density in each route overshoots the equilibri
given atr tot50.563, and continues to oscillate just arou
r tot with opposite phases.

Having described the results of a simulation based on
CA rule 184, let us now look at additional factors charact
izing the dynamics of traffic flow, namely, randomness
noise effect of individual vehicles. The CA rule 184 adopt
in the simulation is a minimal model for traffic flow. In ad
dition, we can point out the importance of the different b
haviors of individual drivers. Specifically, the effect corr
sponds to nondeterministic acceleration as well
overreaction while slowing down, which is crucially impo
tant for the spontaneous formation of traffic jams. Here
suppose that the speed ofnth vehicle is decreased random
by unity with probabilityq. The equation of motion unde
the supposition is given as follows:

m i~ t11!5r im i~ t !1r i$m i~ t !m i 11~ t !1m i~ t !m i 21~ t !%,
~3.4!

here,r̄ i512r i and

r i5H 1 for probability q

0 for probability 12q
~0<q<1!. ~3.5!

In Eq. ~3.5!, the probability distribution is given by the uni
form pseudorandom number due to the linear congruen
method. Note that the limit case ofq50, namely, without the
effect of randomness or noise, has been already show
Fig. 4. On the other hand, it has been confirmed that tra
flow turns out to vanish in the limit case ofq51 in the
stationary state irrespective of the vehicle density. In the
tual traffic, the value ofq can spread widely according t
different driver temperaments and traffic conditions, etc.
Fig. 5, we show simulation results of time evolution of th
average velocity forq50.2. In this figure, we can find tha
the effect of randomness or noise tends to suppress the c
plex structures. Note that the average velocity in equilibriu
is diminished by the effect.

e
ity

FIG. 5. Time dependence of average velocity on each route
q50.2 with real-time information provided. The initial density o
vehicles on each route is 0.166 and 0.960. The broken line re

sents the average velocity in equilibrium state:v̄eq50.776.
1-4
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B. Random route decision„without information …

In this section, we simulate traffic flow without any info
mation in order to contrast with that when real-time inform
tion is provided. When a driver selects a route without a
information, we assume a driver determines a route r
domly. The coefficientljR(t) is described as follows:

ljR~ t !5H 1 for probability p

0 for probability 12p
~0<p<1!,

~3.6!

here, the probability distribution is given by the same way
Eq. ~3.5!.

Figures 6~a! and 6~b! present the time dependence of a
erage velocityv̄ l(t) and of vehicle densityr l(t) where the
initial vehicle densities of the routes arer150.166 andr2
50.960. In this simulation, we adoptp50.5, where the
driver selects either route impartially. We find that traf
flow imbalance between the routes is gradually relaxed
contrast to the results of providing information shown in F
4. Moreover, in the evolution curves ofv̄ l(t) andr l(t), we
can observe fluctuation near the equilibrium atr tot50.563.

The above is a simulation forp50.5, let us now examine
other cases of different probabilityp. Each vehicle in the
system tends to change~keep! its own route forp,0.5 (p
.0.5). As a result, relaxation of a gradient of vehicle dens
between two routes is accelerated~decelerated! for p
,0.5 (p.0.5). In actual vehicular traffic, a value ofp is
closely related to not only driver temperaments and driv
habits but also traffic conditions around the intersection.
example, the case ofp close to zero seems to be relevant

FIG. 6. Time dependence of average velocity~a! and vehicle
density ~b! on each route without provision of information whe
drivers select a route randomly. The initial density of vehicles
each route is 0.166 and 0.960. The broken lines represent the

age velocity and the density of vehicles in equilibrium state:v̄eq

50.776,r tot50.563.
01612
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the situation where drivers react individually on the traf
information, e.g., a local radio station. In Fig. 7, we sho
two extreme simulation results forp50.1,0.9.

IV. DISSIPATIVE STRUCTURE OF TRAFFIC FLOW

In the preceding section we showed that real-time inf
mation resulted in spontaneous oscillation in the time evo
tion of traffic flow. Let us now turn our attention to the cau
of the oscillation in traffic flow when real-time information i
provided. For this section, we studied the traffic flow fro
the kinetic theory of gases.

We can characterize vehicular traffic by its wide range
density. In fact, vehicular traffic density ranges from qu
low in which a vehicle runs almost freely to high~a traffic
jam!. In order to define the thermodynamic quantities of v
hicular traffic, we must confirm whether or not the loca
equilibrium hypothesis is fulfilled in the system. In gener
the system realizes the local equilibrium by dissipation, w
a sufficient number of particle collisions. Therefore in traf
flow, we may not be able to assume a local equilibrium
quite low density with few instances of interaction betwe
vehicles. Fortunately, a unique dissipation process due to
driver’s optimal velocity and the speed limit makes it po
sible to assume the conditions of the local equilibrium wi
out a sufficient number of ‘‘collisions’’ in traffic flow. Paren
thetically, we note that CA rule 184 adopted in the simulati
can be regarded as the most naive model for realizing
unique dissipation process in vehicular traffic.

In this section, we define the thermodynamic quantity
traffic flow based on the mechanism of the dissipation p
cess stated above.

n
er-

FIG. 7. Time dependence of average velocity on each ro
without provision of information where drivers select a route at
probability: ~a! p50.1, ~b! p50.9. The initial density of vehicles
on each route is 0.166 and 0.960. The broken lines represen
average velocity and the density of vehicles for equilibrium sta

v̄eq50.776,r tot50.563.
1-5
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A. Production and application of entropy

For a one-dimensional traffic flow, we can introduce t
following statistical quantity:

Hl~ t !5E E dvdx fl~x,v,t !ln f l~x,v,t !, ~4.1!

where f l denotes the one-body distribution function of
route, l denotes position,x represents velocityv at time t.
Furthermore,f l satisfies the normalization relation as fo
lows:

E E dvdx fl~x,v,t !5r l~ t !. ~4.2!

The time evolution off l is described by the following equa
tion, namely, the Boltzmann equation of traffic flow:

] f l~x,v,t !

]t
1v

] f l~x,v,t !

]x
5S ] f l~x,v,t !

]t D
coll

. ~4.3!

The left-hand side of the equation represents the time ev
tion for f l without interaction, and the right-hand side repr
sents the rate of change off l with time, due to interaction
between vehicles, which corresponds to mutual collision
molecules in gases. The kinetic theory of vehicular tra
analogous to the Boltzmann equation was already introdu
by modifying the concepts of gases@7–15#.

We adopted a quite simple interaction based on CA r
184 for single-lane traffic with the periodic boundary con
tion. The equation of motion of vehicles obeying the CA-1
rules is

m i~ t11!5m i~ t !m i 11~ t !1m i~ t !m i 21~ t !. ~4.4!

The above equation indicates that there are only two mo
v50 andv51. The state ofv50 is given by the interaction
between vehicles that arises only whenm i(t)51 and
m i 11(t)51, while the state ofv51 is given for the other
cases. The probability of a vehicle withv50 at the routel is
given by n0l(0<n0l<1) and that withv51 is given by 1
2n0l . By means of the normalization relation given by E
~4.2! and the periodic boundary condition, a rate of chan
of Hl , with time is calculated as follows:

dHl~ t !

dt
5E E dxdv

] f l~x,v,t !

]t
ln f l~x,v,t ! ~4.5!

5r l

dn0l

dt
lnS n0l

12n0l
D . ~4.6!

In the last equation, the space uniformity off l is assumed.
When the probabilityn0l is high, i.e.,n0l.0.5, n0l can be
considered as a decreasing function of time based on
relaxation process due to the mutual collision of vehicles.
the other hand,n0l is regarded to be constant with time whe
n0l is small, i.e.,n0l,0.5, where vehicles rarely encount
other vehicles. Therefore, it is possible to considerHl as a
01612
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decreasing function of time. Based on the above consi
ation, we adoptHl as the entropy of traffic flow that obey
the CA-184 rules as follows:

Sl~ t !52Hl~ t ! ~4.7!

52r ln0l ln n0l2r l~12n0l !ln~12n0l !. ~4.8!

Note that the ground state of the CA rule 184 is obtain
exactly by its density given as follows@38,39#:

n0l512 v̄eq5
2r l21

r l
. ~4.9!

Having described the entropy of traffic flow, let us no
consider the irreversible flow driven by a difference of t
entropy in each route~Fig. 8!.

Entropy production is a useful thermodynamic quant
for treating an irreversible flow@40–42#. The entropy pro-
ductionP is given as follows:

P5E dV(
k

JkXk . ~4.10!

In Eq. ~4.10!, V represents system volume andJk the irre-
versible part of flow driven by the gradient of the intensi
variableXk ; k is an index of a constituent of a system, i.e
the pair of routes in which the irreversible flow is broug
about.P is always restricted toP>0 according to the secon
law of thermodynamics. The relation ofP50 andP.0 is
given for both the reversible and irreversible processes
general,P is bound to minimize itself in the steady sta
under some constraint, e.g., the boundary conditions o
system. The gradient of the intensive variableXk corre-
sponds to the differential coefficient of the entropy with r
spect to conservative quantities. We adopted the numbe
vehicles as the conservative quantity of a system. In tra
phenomena, the kinetic energy of vehicles dissipates to
internal energy of a system, e.g., combustion of fuel, rad
tion of heat from brakes, etc. As a result, the different
coefficient of the entropy with respect to density of vehic
is given as follows:

dSl

dr l
5S r l

dn0l

dr l
1n0l D lnS 12n0l

n0l
D2 ln~12n0l !.

~4.11!

FIG. 8. The irreversible flow driven by the gradient of the e
tropy.
1-6
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DYNAMICS OF TRAFFIC FLOW WITH REAL-TIME . . . PHYSICAL REVIEW E 69, 016121 ~2004!
We can find a component inversely proportional tor l in the
first and the second term of the right-hand side of Eq.~4.11!,
under the local-equilibrium hypothesis, i.e.,n0l512 v̄eq
5(2r l21)/r l . Therefore, it is reasonable to adopt 1/r l as
the intensive variable.

Based on the above consideration, we can express
gradient of the intensive variableX, between two routes, a
follows:

X5
1

r1
2

1

r2
. ~4.12!

Incidentally, we can transform Eq.~4.12! into an expression
with the average velocity in each route under the loc
equilibrium hypothesis, which is given by Eq.~4.13!,

X5 v̄12 v̄2 . ~4.13!

The intensive variable described above corresponds to th
traffic flow when real-time information is provided, as me
tioned later.

B. Diffusion process without information

In this section, we study the relaxation process of tra
flow without any information. In the system, an irreversib
flow is driven by the difference in vehicle densities betwe
routes. We will examine the time evolution of entropy pr
duction from analytical and numerical calculation a
proaches to determine the dynamic features of the syste

In order to describe the dynamics of traffic flow, we i
troduce the conservation equations of the number of vehi
without information in Eq.~4.14!. In the following equa-
tions, the coefficients 1/L151/L251/L are omitted.

dr1

dt
5gS 1

r1
2

1

r2
D1R~ t !,

dr2

dt
5gS 1

r2
2

1

r1
D2R~ t !. ~4.14!

Here,g is a constant coefficient. In these equations, the e
librium states of traffic flow are given atr15r2 . The first
term on the right-hand side of the equations correspond
the phenomenological relations, e.g., Fick’s law for diff
sion. The second term on the right-hand side,R(t), is the
stochastic function expressed by a binary array,R(t)
5$2e,e%, where ueu.O(L21); R(t) represents random
movement of vehicles between routes. Hence, the first t
for the diffusion effect dominates over the dynamics of t
system far from equilibrium, while the second term for ra
domness of vehicular movement becomes dominant n
equilibrium. In general, it is useful to examine the syste
stability in order to understand the structure of the dynam
Unfortunately, it is impossible to determine the stability
the system by linearization of these equations due to
structural instability at equilibrium. Therefore, we conce
trated on calculating the entropy production in order to
amine the system stability.
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The system entropy productionP0 and its differentiation
with respect to time,dP0 /dt, are given below

P05S dr1

dt
2

dr2

dt D S 1

r1
2

1

r2
D , ~4.15!

dP0

dt
5S d2r1

dt2
2

d2r2

dt2
D S 1

r1
2

1

r2
D

1S dr1

dt
2

dr2

dt D S 1

r2
2

dr2

dt
2

1

r1
2

dr1

dt D . ~4.16!

The second term on the right-hand side of Eq.~4.16! is al-
ways negative, but the first term can be both positive a
negative. When the system is driven far from equilibriu
namely, ur12r2u@uR(t)u, we can getdP0 /dt<0. For the
state near equilibrium, namely,ur12r2u.uR(t)u, we can get
dP0 /dt.0. Consequently, these analyses based on the
tropy production assure the stability of the system exc
around equilibrium.

Next, we simulate the time evolution of the entropy pr
duction in order to confirm the above analysis. Figure
shows the time evolution ofP0 for initial vehicle densities
r150.166 andr250.960. We find thatP0 decreases mono
tonically with fine structures and fluctuates aroundP050
due to random movement of vehicles between routes. On
whole, the simulation result is consistent with that of t
analysis based on the conservation equations for the num
of vehicles stated above. In general transport phenome
e.g., the diffusion process, the irreversible flowJ is driven
proportionally to the gradient of the intensive variableX near
equilibrium, where the entropy production is minimized
its steady state. Therefore, we can regard the transport
nomena observed in the traffic flow without any informati
as an ordinary diffusion process.

Incidentally, we gave the probabilityp which determines
the rate of the route changejR given in Eq.~3.6!. In the time
evolution of a vehicle densityr(t) the relaxation of the gra-
dient ofr(t) between two routes is accelerated~decelerated!
for p,0.5 (p.0.5) where each vehicle tends to chan
~keep! its own route. It means that the probabilityp is closely
related to the diffusion coefficient of the system. Note that
the small value ofp, namely, the large diffusion case, inst

FIG. 9. Time dependence of the entropy production of tra
flow without information. The initial density of vehicles on eac
route is 0.166 and 0.960.
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bility of the system with vibratory structures is induced
overshoot of traffic flow when the initial gradient ofr(t)
between two routes is small.

Next, we attempt to confirm fulfillment of the local equ
librium in traffic flow, which is required to define the the
modynamic quantities of the system. We present a phase
jectory of traffic flow onv̄ l-r l plane in Fig. 10. This figure
indicates that the states of vehicular traffic in each route
distributed near equilibrium. This means that the scale
space~time! in variation of the states is sufficiently large
comparison with the mean free path~mean free time! of in-
dividual vehicles. We can therefore conclude that the sta
of traffic flow evolve with time under the local-equilibrium
hypothesis.

C. Dissipation process with information provided

We now turn from the diffusion process in vehicular tra
fic without information and consider traffic flow dynamic
when information is provided in real time. In the system, t
irreversible flow is driven by the difference of average v
locity in each route. In this section, we examine the dissi
tion of traffic flow when real-time information is provided

First, we introduce the conservation equations of the nu
ber of vehicles when real-time information is provided
follows:

dr1

dt
5k$u~ v̄12 v̄2!2u~ v̄22 v̄1!%,

dr2

dt
5k$u~ v̄22 v̄1!2u~ v̄12 v̄2!%. ~4.17!

Here, k(51/L151/L251/L) is a constant. In these equa
tions, equilibrium states are given atr15r2( v̄15 v̄2). Un-
fortunately, it is impossible to examine the stability of th
system by linearization of these equations because of

FIG. 10. The phase trajectory onv̄-r plane without information
(p50.5). The open circle and the solid one represent the trajec
in each route.
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structural instability at equilibrium. Therefore, we would lik
to examine the stability of the system by means of the
tropy production.

In the system, vehicular traffic is expected to approa
equilibrium by the irreversible traffic flow between route
which is driven by the information based on average vel
ity. Therefore, the entropy productionPinf when information
is provided is described by the gradient of the average
locity as follows:

Pinf5S dr1

dt
2

dr2

dt D ~ v̄12 v̄2!. ~4.18!

From the above equation, we can find thatPinf is the
Lyapounov function.Pinf thus decreases monotonically wit
time as follows:

dPinf

dt
5S d2r1

dt2
2

d2r2

dt2
D ~ v̄12 v̄2!

2S dr1

dt
2

dr2

dt D S dv̄1

dt
2

dv̄2

dt
D<0. ~4.19!

This calculation presupposes that the average velocity
each route reaches its equilibrium value, namely,v̄eq given in
Eq. ~4.9!. As a result, the analysis ofPinf based on the con
servation equations of the number of vehicles ensures
the system is stable, as long as the local-equilibrium hypo
esis is achieved at every moment in each route.

We can now simulate the time evolution of entropy pr
duction in order to confirm the above analysis. Figure
shows the time evolution ofPinf for initial vehicle density
r150.166 andr250.960. In this figure, we find continuou
and irregular vibratory structures driven far from equili
rium. The result suggests a breakdown of the loc
equilibrium hypothesis. There is an inverse flow against
relaxation of the gradient of average velocity at a perio
dPinf /dt.0, considering the structure ofPinf given in Eq.
~4.18!. To investigate this process, a phase trajectory of t
fic flow on thev̄ l-r l plane is plotted in Fig. 12. We find tha
the average velocity in each route is distributed far fro
equilibrium, andv̄ l does not reach its equilibrium valuev̄eq
given in Eq.~4.9!. These results indicate that the traffic in
formation based on a nonequilibrium state is fed back i
traffic flow at every moment. In the process, the state

ry

FIG. 11. Time dependence of the entropy production of tra
flow with real-time information provided. The initial density of ve
hicles on each route is 0.166 and 0.960.
1-8



fo
in

s

ro
s

ve
uc

r-
ut

o
n

ro
th
o

tiv
i-
is

he
s
-
n

ss

he
a

n
n-
f
to
a

er-

en
re

on-
ion

a-
o

of
w
ss,
. In
in

of
ee

b-
of
-

th

f

ne
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traffic in each route is spread instantaneously as traffic in
mation before the state of traffic is relaxed by sufficient
stances of vehicle interactions. In other words, the scale
space~time! for the variation of the state of traffic flow i
comparable to the mean free path~mean free time! of indi-
vidual vehicles. In this situation, the feedback process p
duces conflict between the average velocity and the den
of vehicles, e.g.,v̄1. v̄2 does not necessarily giver1,r2 .
As a result, the inverse flow against the gradient of the
hicle density is driven and causes complex vibratory str
tures in the time evolution ofPinf . It is remarkably different
from the diffusion process of traffic flow without any info
mation, where the local-equilibrium hypothesis in each ro
is satisfied at every moment.

In connection with the inverse flow against the gradient
the intensive variable, one should refer to the active tra
portation observed in the chemical reaction@42–44#. The
active transportation is interpreted as a nonequilibrium p
cess satisfying the local-equilibrium hypothesis, where
chemical reaction evolves more slowly than the relaxation
the system due to the elastic collision of particles. The ac
transportation in traffic flow with information provided orig
nates from a breakdown of the local-equilibrium hypothes
which is in contrast to that of the chemical reaction.

Before concluding this section, we should refer to t
effect of randomness or noise of traffic flow given in Eq
~3.4! and ~3.5!, on achievement of the local-equilibrium hy
pothesis. In Fig. 13, we show the time evolution of the e
tropy production,Pinf , considering the effect of randomne
or noise withq50.2, for initial vehicle densitiesr150.166
and r250.960. In this figure, we can find decrease of t
vibratory structures. Moreover, in Fig. 14, it is shown
phase trajectory onv̄ l-r l plane for the same initial vehicle
density. We can find structure such as the limit cycle arou
the equilibrium point, which is altered by the effect of ra
domness or noise. These results suggest restoration o
local-equilibrium hypothesis. We can consider that the res
ration originates from the nondeterministic deceleration of

FIG. 12. The phase trajectory onv̄-r plane with real-time infor-
mation provided. The open circle and the solid one represent
trajectory in each route.
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individual vehicle which increases instances of vehicle int
actions, and furthers the relaxation of traffic flow.

V. CONCLUSION

In this paper we studied the dynamics of traffic flow wh
information was provided in real time. The dynamic featu
of traffic flow was abstracted through the perspective of n
equilibrium statistical physics and the computer simulat
based on CA.

For an imbalanced network of roads without any inform
tion, the irreversible traffic flow is driven proportionally t
the gradient of the intense variable, namely, the inverse
the vehicle density. Therefore, the relaxation of traffic flo
in a network of roads is interpreted as the diffusion proce
where entropy production is minimized in the steady state
the system, the local-equilibrium hypothesis is satisfied
each route; the scale of space~time! in variation of the state
of traffic flow, i.e., the average velocity and the density
vehicles, is sufficiently large compared with the mean fr
path ~mean free time! of individual vehicles.

Providing real-time information disrupts the local equili
rium of traffic flow in each route. In the system, the scale
space~time! in the variation of the state of traffic flow be
comes comparable with the mean free path~mean free time!

e

FIG. 13. Time dependence of the entropy production forq
50.2 with real-time information provided. The initial density o
vehicles on each route is 0.166 and 0.960.

FIG. 14. The phase trajectory onv̄-r plane for q50.2 with
real-time information provided. The open circle and the solid o
represent the trajectory in each route.
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of individual vehicles due to the instantaneous circulation
the state of traffic flow through a medium of informatio
The breakdown of the local-equilibrium hypothesis cau
conflict in the relation between the average velocity and
vehicle density. This is the origin of the characteristic no
linear feedback of the system, by which backward flow
driven against the gradient of the vehicle density. As a res
complex structures of order, i.e., the dissipative structu
are created spontaneously, involving finite entropy prod
tion of traffic flow. Incidentally, the effect of randomness
noise in traffic flow works to restore the local-equilibriu
hypothesis.

The contrastive study between the analysis from the p
spective of statistical physics and the computer simula
based on CA revealed that the breakdown of the loc
equilibrium hypothesis is essential in the dynamics of tra
flow with the provision of real-time information. For the sy
tem to work, it needs theoretical treatment of the dissipat
flow, e.g., non-Fickian diffusion for the irreversible traffi
flow between routes. Fortunately, there have already b
several studies on the extended thermodynamics beyond
local-equilibrium hypothesis, where the irreversible proc
with a rapid change in space~time! disrupts the local equi-
librium @45,46#. Furthermore, we can point out that the ASE
~asymmetric simple exclusion process! model has anothe
potentiality of theoretical treatment of the system. The AS
model is the simplest prototype of interacting systems dri
g

e

nd

B

s

t A
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far from equilibrium, and one-dimensional model, in partic
lar, is solved exactly@47,48#. In our model, therefore, it
might be possible to utilize the exact treatment, e.g.,
Bethe ansatz@49# and the free fermion, which succeeds
modeling one-dimensional spin or electron systems.

Finally, we refer to phase transitions of the system. T
phase transitions in our model can be characterized by
provided information~contents, way of provision!, topology
of a network of roads with multi-intersections, and th
boundary conditions, as well as vehicle density. In particu
the existence of so-called boundary-induced phase tra
tions have been demonstrated by computer simulations
exact calculations of the one-dimensional model with
open boundary conditions@47,50–52#. In these models, im-
balance of insertion and removal of a vehicle at the bound
breaks the translational invariance and brings a variety
stationary states with a nontrivial density profile. It indicat
that the boundary conditions play an important part in ch
acterization of nonequilibrium systems. In our model, a co
bination of different boundary conditions in each route
expected to bring a variety of states.
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@49# G. Schütz, J. Stat. Phys.71, 471 ~1993!.
@50# J. Krug, Phys. Rev. Lett.67, 1882~1991!.
@51# M. Hankel and G. Schu¨tz, Physica A206, 187 ~1994!.
@52# A.B. Kolomeisky, G. Schu¨tz, E.B. Kolomeisky, and J.P. Stra

ley, J. Phys. A31, 6911~1998!.
1-11


