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Dynamics of traffic flow with real-time traffic information
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We studied dynamics of traffic flow with real-time information provided. Provision of the real-time traffic
information based on advancements in telecommunication technology is expected to facilitate the efficient
utilization of available road capacity. This system has a potentiality of not only engineering for road usage but
also the science of complexity series. In the system, the information plays a role of feedback connecting
microscopic and macroscopic phenomena beyond the hierarchical structure of statistical physics. In this paper,
we tried to clarify how the information works in a network of traffic flow from the perspective of statistical
physics. The dynamical feature of the traffic flow is abstracted by a contrastive study between the nonequilib-
rium statistical physics and a computer simulation based on cellular automaton. We found that the information
disrupts the local equilibrium of traffic flow by a characteristic dissipation process due to interaction between
the information and individual vehicles. The dissipative structure was observed in the time evolution of traffic
flow driven far from equilibrium as a consequence of the breakdown of the local-equilibrium hypothesis.
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[. INTRODUCTION structure constructed by these characteristic scales is a useful
concept in statistical physics for understanding complex
Statistical physics is being applied to complex systemsiatural phenomena.
such as many-body problems outside the traditional domain This paper seeks to understand the dynamic relation be-
of physical systems, e.g., biological and social sciences. Itween traffic flow and information from the perspective of
these applications, vehicular traffic has been studied for alstatistical physics. This may provide interesting dynamics
most half a century in order to understand its unique phebeyond the hierarchy in statistical physics, as well as a state
nomena. Theoretical analysis and computer simulation frondriven far from equilibrium. Recently, increasing traffic con-
the perspective of statistical physics not only provide fundagestion, especially in cities, underscores the importance of
mental aspects, but also support a better understanding of tleficiently utilizing the available road capacity. Provision of
complex phenomena observed in real traffie-3]. Further-  real-time traffic information based on advancements in tele-
more, it is worthy of attention that these benefits in the studycommunication technology is expected to improve the imbal-
of vehicular traffic offer the possibility of understanding the ance of traffic flow distribution in the road network. This
various fundamental aspects of dynamics of truly nonequisystem comprises three phases in real time: collection of ob-
librium systems. In this paper, we study dynamics of trafficservable quantities measured by roadside facilities, process-
flow with information provided, which brings about a differ- ing of collected data, and provision of traffic information.
ent kind of aspect in statistical physics. However, providing real-time information may have an ad-
Statistical physics provides us two main—but different—verse effect, such as causing over-reaction and concentration,
concepts for modeling vehicular traffic as a nonequilibriumeven though it is meant to benefits such as to bring about
system. One is a macroscopic approach based on a flui@éfficient distribution of vehicleg16—21]. When real-time in-
dynamical description. In this framework, traffic is viewed asformation is provided, a greater number of drivers will tend
compressible fluid formed by vehicles that do not appeato concentrate on a recommended route, and consequently
explicitly [4—6]. The other concept is a microscopic ap- generate oscillations in road usage. As a result, the state of
proach, where each vehicle is represented by interacting pavehicular traffic is driven far from equilibrium, where a re-
ticles[7—-15. We can generally distinguish these frameworkssponse feature of traffic flow based on many-body effects
from their characteristic scales in space and time. For explays an important role.
ample, the characteristic scale in the fluid-dynamical descrip- To model traffic flow provided with real-time traffic infor-
tion corresponds to the wavelengtbr frequency of com-  mation, it is essential to express the instantaneous circulation
pression waves driven in ftraffic flow. In contrast, theof information throughout the system. In the system, car-
characteristic scale in the microscopic description is given byollowing behavior and route decision at an intersection are
headway distance, which is interpreted as the mean free pathicroscopic phenomena, spread throughout the whole state
determined in the traditional kinetic theory of gases. In gen-of traffic flow as macroscopic phenomena, e.g., average ve-
eral, the ratio of the characteristic scale plays the role of docity through the medium of traffic information. This sug-
small expansion parameter to distinguish different ap-gests that traffic information plays a role of feedback that
proaches as stated above, and gives us validity of approxeonnects the microscopic and the macroscopic phenomena
mation schemes of analytical calculation. A hierarchicalbeyond the hierarchical structure of statistical physics.
In order to study the dynamics of the system, we should
first describe traffic flow by the microscopic framework that
*Electronic address: yyokoya@jari.or.jp represents the interacting vehicles. There are mainly three
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different microscopic frameworks for modeling vehicular
traffic: the kinetic theory, the car-following theory, and the
particle-hopping theory.

In the kinetic theory, the probabilistic description of ve-
hicular traffic is developed on the analogy of the kinetic
theory of gases, where traffic is treated as gas of interacting
particles| 7—15]. In this framework, the time evolution of the
distribution function of vehicles is given by the Boltzmann-
like equation, where the correlation between a leading ve-
hicle and a following one is almost negligible. Therefore, the
one-particle distribution function is valid in a scale of the
headway distance, namely, the mean free path.

In the car-following theory{22], a deterministic descrip-
tion of the motion of individual vehicles is provided by the
principles of Newtonian dynamics. In this formulation, the
potential energy between vehicles is originated by the stimu-
lus every vehicle receives. The stimulus consists of the ex-
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ternal force due to environment, e.g., geometry of a road, as FIG. 1. An outline of the simulation model. At the intersection,

well as the interaction with all the other vehicles in the Sys_each driver decides on a route from the information constantly pro-
tem. In general, the stimulus can be expressed by the fun¥ided by a road side facility.
tion of the speed of the vehicle, the difference in the speeds
of the following vehicle and its leading one, the distance-section, as described in Fig. 1. Distribution of vehicles of an
headway, etc. _ _ _ _ ith lattice site on routé (I=1 or 2 at timet is expressed by

In the parycle-hoppmg theory_, traffic flc_)w is des_crlped by a binary array, u;(t)={0,1}. In the CA complying with the
the stochastic dynamics of individual vehicles, which is usuyle 184[23], the variable takes ohu;(t)=0 when a lattice
ally formulated by the cellular automat&€A) [23-26. The  sijte is empty andu;(t)=1 when a lattice site is occupied.
CA model is ideal for an efficient large-scale computer simu-at each discrete time step,~t+ 1, an arbitrary arrangement

lation owing to discretization of position, speed, acceleraf vehicles is updated synchronously as follows:
tion, and time. The discretization provides us not only com-

putational efficiency but also an effective aspect of the

dynamics of vehicular traffic, where a characteristic dissipa- Mi(DYi(t) otherwise
tion process of the car-following behavior is reduced to the Xi(t+1)={ Mi(OF;(t) fori=m 2.1
hopping dynamics of particles on lattice sites. Moreover, the M, ()G (1) fori=m-+1.

results of a computer simulation based on the CA model has
been tried to compare with not only theoretical analysig.,
Burger's equation interpreted by the ultradiscretizationThe equation of motion in each route is given by a diagonal
[27,28), but also with empirical results from real vehicular part of Eq.(2.1) as follows:

traffic [29-37.

In this paper, we first study the dynamics of traffic flow
under the provision of real-time information by means of the
computer simulation based on the CA model. Next, we ana-
lyze the system theoretically from the perspective of non-
equilibrium statistical physics. In the analysis, we apply the

kinetic theory to the system. The results of the theoreticairhe upper of the Eq(2.1) represents the motion of CA,
analysis are compared with those obtained from the comexcept for lattice sites around the intersection. The middle
puter simulations based on the CA model. In the above chaiand lower of the Eq(2.1) represent the motion of CA im-

of analysis, we find that the computer simulation enables ugediately before ii=m) and after {(=m-+1) the intersec-

to abstract characteristic features of the system as well as #pn. The equations describe the behavior of drivers at an
examine validity of the approximation scheme of the analyti-intersection in which drivers decide a route based on real-
cal calculations. time traffic information, illustrated in Fig. 1.

This paper is organized as follows. Section Il describes The matrices on the right-hand side of E2.1) are given
the equation of motion of traffic flow conforming to CA. py the binary array u(t) as follows:

Section Il presents the time evolution of traffic flow. Section
IV analyzes the time dependence of traffic flow from the
perspective of nonequilibrium statistical physics. Finally, the

Li(t) = (Xi (1)1,

Zpi() = (Xi(1)22 2.2

Lwi(t) (b

; M;(t)= -, (2.3
paper concludes with Sec. V. i 2,(t) 2 ()
Il. EQUATION OF MOTION
, L - - Yt Puica(t)
This section introduces an equation of motion of the CA Yi(t)= i+1 i+1 ) 2.4
that moves on a couple of single-lane crossings in one inter- ! Yui—(t) Zui_qa(t)) ’
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FIG. 2. The arrangement of vehicles in a concurrent occupancy

case. Each vehicle advances at the probability 0.5.
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() =D 1+ 2 (0
2f,(t) =" (D% +2u (D%,
Tyt =1 (0 E+ 2D
2,() =1 (0% +2m (12 (2.7

Here, Tu,(t)=1—"'ui(t) and Té=1-'¢. In the equations
above, 'u;, 1(t) ['ui_1(t)] means distribution of an adja-
cent lattice site in the moving directiqpposite direction
Incidentally, calculations in the equations are dealt with ac
cording to the logical operation.

In Eq. (2.7), '¢ is a coefficient that determines whether

the CA keeps or changes a route; the CA keeps a route for

'¢=1, and changes to another route fg=0, as shown in
Eq. (2.9).

1 keep aroute

: (2.9

“lo change a route.

The coefficient'¢ is decided by the traffic information. In
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FIG. 3. A diagram of the simulation model. The broken line
represents an intersection. Vehicles run following the arrows. At the
intersection vehicles jump to another end of the broken line to keep
their route while they pass the broken line to change their route.

The simulation model complying with Eq$2.1)—(2.9)
can be described diagrammatically in Fig. 3, where the bro-
ken line represents an intersection and the arrows indicate a
moving direction of vehicles. At the intersection vehicles
jump to another end of the broken line to keep their route
while they pass the broken line to change their route.

Before concluding this section, we would like to intro-
duce some quantities observed in the system. Average veloc-

ity v,(t) is defined as

Uj

nf(t)

(t)=m,

(2.10
whereni(t) is the number of vehicles that advance,aand

n,(t) is the total number of vehicles on the routeThe
vehicle density on routeis defined as

ni(t)

L,

pi(t) (2.11

where L, is the number of lattice sites on routeIn the
simulation, we adopted the size of the two routeslLas
= L,=L (L=500).

Ill. SIMULATION OF RELAXATION PROCESS

In this section, we simulated traffic flow with real-time

this paper, we assume all drivers to be utilizing the trafficinformation provided. We adopted the information consisting

information provided at the intersection.
A word of caution is in order here. We permit only one

of average velocity. For comparison, we also studied the traf-
fic flow when a driver decided on a route randomly without

vehicle to advance when two vehicles select the same latticgny information. In the following simulation, we show the
site at the intersection illustrated in Fig. 2. We give each oftime dependence of average velocity and that of vehicle den-

the two vehicles from different routes the same probability

,sity on each route.

0.5, in order to avoid concurrent occupancy of a lattice site.

On each route wittL lattice sites, CA has the following
periodic boundary conditions:

') ="ua(t). 2.9

A. Provision of average velocity information

To provide real-time information based on average veloc-
ity, the coefficient at time, '&,(t), is described by func-
tion as follows:

This therefore assures conservation of the total number of the

CA on two routes.

&5 (1) =6[v,(t)— v,/ (1)]. (3.
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FIG. 5. Time dependence of average velocity on each route for
g=0.2 with real-time information provided. The initial density of
vehicles on each route is 0.166 and 0.960. The broken line repre-

sents the average velocity in equilibrium staT@d=0.776.

ticular, we can confirm in the result @f(t) [Fig. 4(b)] that
the vehicle density in each route overshoots the equilibrium
given atp,,=0.563, and continues to oscillate just around
prot With opposite phases.

Having described the results of a simulation based on the

FIG. 4. Time dependence of average velodiy and vehicle L
density(b) on each route with real-time information provided. The _CA rule 184, let us now look at additional factors character-

initial density of vehicles on each route is 0.166 and 0.960. ThdZing the dynamics of traffic flow, namely, randomness or

broken lines represent the average velocity and the vehicle densifjoise effect of individual vehicles. The CA rule 184 adopted
in equilibrium statew o= 0.776, pu=0.563. The log is to the base in the simulation is a minimal model for traffic flow. In ad-

10. dition, we can point out the importance of the different be-
haviors of individual drivers. Specifically, the effect corre-

This equation indicates that a driver selects a rduthen ~ SPONds to  nondeterministic acceleration as well as
the average velocity exceeds that of another rolte overreaction while slowing down, which is crucially impor-

Figures 4a) and 4b) illustrate the time dependence of tant for the spontaneous formation of traffic jams. Here we
average velocity7|(t) and that of vehicle density,(t) for an suppose that the speed mth vehicle is decreased randomly

initial vehicle density in each route qf;=0.166 andp, by unity with probabilityg. The equation of motion under

=0.960. In these figures, the broken line represents an equtlt]e supposition is given as follows:

librium distribution of vehicles, Withv_eq=0.776 at piot

log(time step)

=0.563, which is given by the following equation: wi(t+ 1):fi,ui(t)+f_i{,ui(t),ui+1(t)+Mi(t)#i—1(t)}a
(3.9
1, 0<p,=0.5,
Da={1— 3.2 —
Veq —p“’t, 0.5<pi=1. 32 here,r;=1-r; and
Ptot
Here, the total vehicle density,, is given as follows: 1 for probability q

0 for probability 1—q

Zm

=12

Prot= 33 Eq. (3.5), the probability distribution is given by the uni-

IZEM L form pseudorandom number due to the linear congruential
' method. Note that the limit case & 0, namely, without the

Equation(3.2) represents the phase transition from free rowe'.cf‘aCt of randomness or noise, has been already shown in

to congestion flow when the system is half-fillgg,=0.5. Fig. 4. On the other hand, it has been confirmed that traffic

The broken line represents the total vehicle densjgyin ﬂOW_ tums out to vamsh_ in the limit case @f:.l in the
Fig. 4 (b). We found chaotic oscillation in the simulation stationary state irrespective of the vehicle density. In the ac-

— . _ tual traffic, the value ofy can spread widely according to
results ofv|(t) andp,(t). The complex structures in the time yiterent driver temperaments and traffic conditions, etc. In

evolution,v(t) andp(t), are caused by a concentration of Fig. 5 we show simulation results of time evolution of the
vehicles that rush for a route rEcommended by the traffigyerage velocity fog=0.2. In this figure, we can find that
information. The average velocity(t) continues to vibrate the effect of randomness or noise tends to suppress the com-
with large amplitude and does not appear to converge, eveplex structures. Note that the average velocity in equilibrium
for an intermediate density of vehicleg,{=0.563). In par- is diminished by the effect.
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FIG. 6. Time dependence of average velodi#y and vehicle FIG. 7. Time dependence of average velocity on each route

density (b) on each route without provision of information where \ithout provision of information where drivers select a route at the
drivers select a route randomly. The initial density of vehicles ONprobability: (8) p=0.1, (b) p=0.9. The initial density of vehicles
each route is 0.166 and 0.960. The broken lines represent the avejn each route is 0.166 and 0.960. The broken lines represent the
age velocity and the density of vehicles in equilibrium statg;  average velocity and the density of vehicles for equilibrium state:
=0.776, pyr=0.563. Veq=0.776, pyo=0.563.

B. Random route decision(without information ) the situation where drivers react individually on the traffic

In this section, we simulate traffic flow without any infor- information, e.g., a local radio station. In Fig. 7, we show
mation in order to contrast with that when real-time informa-two extreme simulation results far=0.1,0.9.
tion is provided. When a driver selects a route without any
information, we assume a_driver c_ietermines a route ran- |\, pissIPATIVE STRUCTURE OF TRAFFIC FLOW
domly. The coefficient £x(t) is described as follows:
In the preceding section we showed that real-time infor-
1 for probability p o mation resulted in spontaneous oscillation in the time evolu-
0 for probability 1-p (0<p=<1), tion of traffic flow. Let us now turn our attention to the cause
(3.6 of the oscillation in traffic flow when real-time information is
provided. For this section, we studied the traffic flow from
the kinetic theory of gases.
We can characterize vehicular traffic by its wide range of
density. In fact, vehicular traffic density ranges from quite
low in which a vehicle runs almost freely to high traffic

'Er(t) =

here, the probability distribution is given by the same way in
Eq. (3.5.
Figures 6a) and @b) present the time dependence of av-

erage velocityy(t) and of vehicle density,(t) where the 50 n order to define the thermodynamic quantities of ve-
initial vehicle densities of the routes apg=0.166 andp>  hicylar traffic, we must confirm whether or not the local-
=0.960. In this simulation, we adogi=0.5, where the equilibrium hypothesis is fulfilled in the system. In general,
drlve_r selects either route |mpart|ally. We find that trafﬁqthe system realizes the local equilibrium by dissipation, with
flow imbalance between the routes is gradually relaxed, iny syfficient number of particle collisions. Therefore in traffic
contrast to the results of providing mfcimanon shown in F'g-flow, we may not be able to assume a local equilibrium in
4. Moreover, in the evolution curves of(t) andp(t), we  quite low density with few instances of interaction between
can observe fluctuation near the equilibriumpgt=0.563. vehicles. Fortunately, a unique dissipation process due to the
The above is a simulation fgr=0.5, let us now examine driver's optimal velocity and the speed limit makes it pos-
other cases of different probability. Each vehicle in the sible to assume the conditions of the local equilibrium with-
system tends to chand&eep its own route forp<<0.5 (p out a sufficient number of “collisions” in traffic flow. Paren-
>0.5). As a result, relaxation of a gradient of vehicle densitythetically, we note that CA rule 184 adopted in the simulation
between two routes is acceleratddecelerated for p can be regarded as the most naive model for realizing the
<0.5 (p>0.5). In actual vehicular traffic, a value @fis  unique dissipation process in vehicular traffic.
closely related to not only driver temperaments and driving In this section, we define the thermodynamic quantity of
habits but also traffic conditions around the intersection. Fotraffic flow based on the mechanism of the dissipation pro-
example, the case qf close to zero seems to be relevant tocess stated above.
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A. Production and application of entropy j
For a one-dimensional traffic flow, we can introduce the 1
following statistical quantity: e

H|(t):J f dvdx f|(X,U,t)|nf|(X,U,t), (41)

where f, denotes the one-body distribution function of a Al
route, | denotes positionx represents velocity at timet. _/2
Furthermore,f, satisfies the normalization relation as fol- Route 1 Route 2
lows: FIG. 8. The irreversible flow driven by the gradient of the en-
tropy.
f fdvdx fi(x,v,t)=p,(1). (4.2

decreasing function of time. Based on the above consider-

ation, we adopH, as the entropy of traffic flow that obeys
The time evolution off, is described by the following equa- o ca-184 ru?esl as follows: Py y

tion, namely, the Boltzmann equation of traffic flow:

Si(t)=—H(t) (4.7

=—piNgInng —p;(1—ng)IN(1—ng). (4.9

(9f|(X,U,t)
at

(?f|(X,U,t) (9f|(X,U,t)
+v =
ot ax

| s
coll

LJ§Iote that the ground state of the CA rule 184 is obtained

The left-hand side of the equation represents the time evol . . ;
d P exactly by its density given as follow$8,39:

tion for f; without interaction, and the right-hand side repre-

sents the rate of change &f with time, due to interaction _ 2p-1
between vehicles, which corresponds to mutual collision of No=1-veq= ! (4.9
molecules in gases. The kinetic theory of vehicular traffic P

analogous to the Boltzmann equation was already introduced Having described the entropy of traffic flow, let us now

by modifying the concepts of gasgg—15. . - . . .
We adopted a quite simple interaction based on CA ruleconS|der the irreversible flow driven by a difference of the

184 for single-lane traffic with the periodic boundary condi- entropy in each routéFig. 8.

. ; : : : i Entropy production is a useful thermodynamic quantity
';Iuolg.s-l;ge equation of motion of vehicles obeying the CA 184for treating an irreversible flof40-42. The entropy pro-

ductionP is given as follows:

Mt 1) = i () i 1(0) + i (D) g - 1(1). (4.4
sz dvY JXe. (4.10
The above equation indicates that there are only two modes, K
v=0 andv=1. The state ob =0 is given by the interaction
between vehicles that arises only when(t)=1 and

mi+1(t)=1, while the state ob =1 is given for the other

In Eq. (4.10), V represents system volume adgd the irre-

versible part of flow driven by the gradient of the intensive
. . i ; variableX,; kis an index of a constituent of a system, i.e.,
cases. The probability of a vehicle with=0 at the routd is the pair of routes in which the irreversible flow is brought

given by ng(0<ng=1) and that withv=1 is given by 1 '\ b i always restricted t&=0 according to the second
—ng . By means of the normalization relation given by Eqg. law of thermodynamics. The relation &=0 andP>0 is

E)il2-|) ar\l?it;htein?:rigochglcbuc;;tl %ags ?&Tgxﬁn’ a rate of Changegiven for both the reversible and irreversible processes. In
| .

general,P is bound to minimize itself in the steady state
dH, () of under some constraint, e.g., the boundary conditions of a
| |(X,U,t) . . . .
—:J Jdde—lnﬁ(X,v,t) (4.5  system. The gradient of the intensive variablg corre-
dt Jt sponds to the differential coefficient of the entropy with re-
spect to conservative quantities. We adopted the number of
vehicles as the conservative quantity of a system. In traffic
phenomena, the kinetic energy of vehicles dissipates to the
internal energy of a system, e.g., combustion of fuel, radia-
In the last equation, the space uniformity fofis assumed. tion of heat from brakes, etc. As a result, the differential
When the probabilityny, is high, i.e.,ng>0.5, ng can be coefficient of the entropy with respect to density of vehicles
considered as a decreasing function of time based on the given as follows:
relaxation process due to the mutual collision of vehicles. On

)

=g " T-ng “9

the other handyy, is regarded to be constant with time when d_sz dng +nelin 1-ng In(1—ny)
N is small, i.e.,ny<0.5, where vehicles rarely encounter dp, | PVdp, O No) or
other vehicles. Therefore, it is possible to consitigras a (4.11)
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We can find a component inversely proportionaptdn the 0.004
first and the second term of the right-hand side of @dl1), 0,003 W\ |
under the local-equilibrium hypothesis, i.eng=1—-v¢q
=(2p,—1)/p,. Therefore, it is reasonable to adopplas P(t) 0002 f—
the intensive variable. oM 5001
Based on the above consideration, we can express the \A‘
gradient of the intensive variabl between two routes, as 0 2 3'\‘" .
follows: 0.001
1 1 log(time step)
= E_ E (4.12 FIG. 9. Time dependence of the entropy production of traffic

flow without information. The initial density of vehicles on each

Incidentally, we can transform E@4.12 into an expression route is 0.166 and 0.960.

with the average velocity in each route under the local-

equilibrium hypothesis, which is given by E@.13, The system entropy productid?, and its differentiation
with respect to timedP,/dt, are given below

X=v1—05,. (4.13
dpy dpp)(1 1
The intensive variable described above corresponds to that of Po= (W - W) <— - —) ) (4.19
traffic flow when real-time information is provided, as men- Pr P2
tioned later.
d Po d2p1 d2p2 ( 1 1 )
B. Diffusion process without information dt dt? dtz /\p1 P2

In this section, we study the relaxation process of traffic
flow without any information. In the system, an irreversible + (% - %) Ldpp 1dpy (4.1
flow is driven by the difference in vehicle densities between dt  dt /|2 dt 2 dt '
routes. We will examine the time evolution of entropy pro-
duction from analytical and numerical calculation ap-Tne second term on the right-hand side of E416 is al-
proaches to determine the dynamic features of the system.yays negative, but the first term can be both positive and

In order to describe the dynamics of traffic flow, we in- negative. When the system is driven far from equilibrium,
troduce the conservation equations of the number of vehiclegamely, | p, — p,|>|R(t)|, we can getdP,/dt<0. For the

without information in Eq.(4.14). In the following equa-  giate near equilibrium, namely); — p,|=|R(t)|, we can get

tions, the coefficients L4 =1/L,=1/L are omitted. dP,/dt=0. Consequently, these analyses based on the en-
dp 1 1 tropy production assure the stability of the system except
. y(__ _> +R(), around equilibrium.
dt P P2 Next, we simulate the time evolution of the entropy pro-
duction in order to confirm the above analysis. Figure 9
deo _ (1 1) o (4.14 Shows the time evolution dP, for initial vehicle densities
a7 pPo  P1 (0. ' p1=0.166 andp,=0.960. We find thaP, decreases mono-

tonically with fine structures and fluctuates arouRgl=0
Here,y is a constant coefficient. In these equations, the equidue to random movement of vehicles between routes. On the
librium states of traffic flow are given at;=p,. The first whole, the simulation result is consistent with that of the
term on the right-hand side of the equations corresponds tanalysis based on the conservation equations for the number
the phenomenological relations, e.g., Fick’s law for diffu- of vehicles stated above. In general transport phenomenon,
sion. The second term on the right-hand siBét), is the e.g., the diffusion process, the irreversible flows driven
stochastic function expressed by a binary arr&(t) proportionally to the gradient of the intensive varialleear
={—¢,€}, where |e|=0(L™1); R(t) represents random equilibrium, where the entropy production is minimized in
movement of vehicles between routes. Hence, the first territs steady state. Therefore, we can regard the transport phe-
for the diffusion effect dominates over the dynamics of thenomena observed in the traffic flow without any information
system far from equilibrium, while the second term for ran-as an ordinary diffusion process.
domness of vehicular movement becomes dominant near Incidentally, we gave the probability which determines
equilibrium. In general, it is useful to examine the systemthe rate of the route chandg given in Eq.(3.6). In the time
stability in order to understand the structure of the dynamicsevolution of a vehicle density(t) the relaxation of the gra-
Unfortunately, it is impossible to determine the stability of dient of p(t) between two routes is accelerat@®celerated
the system by linearization of these equations due to théor p<0.5 (p>0.5) where each vehicle tends to change
structural instability at equilibrium. Therefore, we concen-(keep its own route. It means that the probabilfys closely
trated on calculating the entropy production in order to ex-elated to the diffusion coefficient of the system. Note that in
amine the system stability. the small value op, namely, the large diffusion case, insta-
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Pinf(t)
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v(t)
0.4 -0.0005
: log(time step)
0.2 FIG. 11. Time dependence of the entropy production of traffic
’ flow with real-time information provided. The initial density of ve-
hicles on each route is 0.166 and 0.960.
0
0 02 04 06 08 1 structurgl instability at equilibrium. Therefore, we would like
,O(t) to examine the stability of the system by means of the en-

tropy production.

In the system, vehicular traffic is expected to approach
quilibrium by the irreversible traffic flow between routes,
hich is driven by the information based on average veloc-

ity. Therefore, the entropy productid®,; when information
is provided is described by the gradient of the average ve-
locity as follows:

FIG. 10. The phase trajectory (DT’-lp plane without information
(p=0.5). The open circle and the solid one represent the trajector
in each route.

bility of the system with vibratory structures is induced by
overshoot of traffic flow when the initial gradient of(t)
between two routes is small. dp, dp,
Next, we attempt to confirm fulfillment of the local equi- mf—(ﬁ dt )
librium in traffic flow, which is required to define the ther-

modynamic quantities of the system. We present a phase trg;om the above equation, we can find tHag, is the

jectory of traffic flow onv;-p, plane in Fig. 10. This figure Lyapounov functionP, thus decreases monotonically with
indicates that the states of vehicular traffic in each route argme as follows:

distributed near equilibrium. This means that the scale of

~vy). (4.18

space(time) in variation of the states is sufficiently large in dPy; [d?p; d%p,| — —
comparison with the mean free patinean free timgof in- dt 42 de (v1—v2)
dividual vehicles. We can therefore conclude that the states
of traffic flow evolve with time under the local-equilibrium d d do.  do-
hypothesis. (ﬂ - ﬁ) (ﬂ — ﬂ) <0. (4.19
dt dt/\ dt dt ' '
C. Dissipation process with information provided This calculation presupposes that the average velocity in

We now turn from the diffusion process in vehicular traf- €ach route reaches its equilibrium value, namelygiven in
fic without information and consider traffic flow dynamics Ed. (4.9). As a result, the analysis &f;,; based on the con-
when information is provided in real time. In the system, theServation equations of the number of vehicles ensures that
irreversible flow is driven by the difference of average ve-the system is stable, as long as the local-equilibrium hypoth-
locity in each route. In this section, we examine the dissipa€sis is achieved at every moment in each route.
tion of traffic flow when real-time information is provided. =~ We can now simulate the time evolution of entropy pro-
First, we introduce the conservation equations of the numduction in order to confirm the above analysis. Figure 11
ber of vehicles when real-time information is provided asshows the time evolution oP;y for initial vehicle density

follows: p1=0.166 andp,=0.960. In this figure, we find continuous
and irregular vibratory structures driven far from equilib-

dp1 rium. The result suggests a breakdown of the local-

dat = «f 0(01 Uz) 9(02 01)} equilibrium hypothesis. There is an inverse flow against the

relaxation of the gradient of average velocity at a period,
dP;;/dt>0, considering the structure &, given in Eq.
d;f K] 0(02 vl) 0(v1 vz)} (4.17 (4.18). To inves_tigate this process, a_l phgse trajectqry of traf-
fic flow on thev,-p, plane is plotted in Fig. 12. We find that
the average veIOC|ty in each route is distributed far from
Here, k(=11L,=1/L,=1/) is a constant. In these equa- equilibrium, andv, does not reach its equilibrium valug,
tions, equilibrium states are given aj= pz(vl—vg) Un-  given in Eq.(4.9). These results indicate that the traff|c in-
fortunately, it is impossible to examine the stability of the formation based on a nonequilibrium state is fed back into
system by linearization of these equations because of theaffic flow at every moment. In the process, the state of
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-0.0002
log(time step)

FIG. 13. Time dependence of the entropy production dor
=0.2 with real-time information provided. The initial density of
vehicles on each route is 0.166 and 0.960.

individual vehicle which increases instances of vehicle inter-
actions, and furthers the relaxation of traffic flow.

FIG. 12. The phase trajectory @np plane with real-time infor- V. CONCLUSION
mation provided. The open circle and the solid one represent the

. ; In this paper we studied the dynamics of traffic flow when
trajectory in each route.

information was provided in real time. The dynamic feature

traffic in each route is spread instantaneously as traffic inforof traffic flow was abstracted through the perspective of non-
mation before the state of traffic is relaxed by sufficient in-equilibrium statistical physics and the computer simulation
stances of vehicle interactions. In other words, the scale dpased on CA.

space(time) for the variation of the state of traffic flow is  For an imbalanced network of roads without any informa-
comparable to the mean free pdthean free timpof indi-  tion, the irreversible traffic flow is driven proportionally to
vidual vehicles. In this situation, the feedback process prothe gradient of the intense variable, namely, the inverse of
duces conflict between the average velocity and the densitj)e vehicle density. Therefore, the relaxation of traffic flow
of vehicles, 8.9.;1>;2 does not necessarily give,<p,. in a network of roads is m_terp_re_te(_j as _the diffusion process,
As a result, the inverse flow against the gradient of the Veyvhere entropy production IS m_|n|m|zed n the_z st_eady_stgte. _In
hicle density is driven and causes complex vibratory struthe system, the Iocal—equnlbnum _hypotlhe.S|s is satisfied in
tures in the time evolution dP;;. It is remarkably different each route; the scale of spagime) in variation of the state

from the diffusion process of traffic flow without any infor- of wraffic flow, i.e., the average velocity and the density of

mation, where the local-equilibrium hypothesis in each routeveh'CIeS' is sufficiently large compared with the mean free

is satisfied at every moment path(mean free timgof individual vehicles.

In connection with the inverse flow against the gradient of . Providing real-time information disrupts the local equilib-

the intensive variable, one should refer to the active transtUM of traffic flow in each route. In the system, the scale of

portation observed in the chemical reactipt?—44. The space(time) in the variation of the state of traffic flow be-

active transportation is interpreted as a nonequilibrium propomes comparable with the mean free patfean free timg

cess satisfying the local-equilibrium hypothesis, where the
chemical reaction evolves more slowly than the relaxation of
the system due to the elastic collision of particles. The active
transportation in traffic flow with information provided origi- 0.8 .
nates from a breakdown of the local-equilibrium hypothesis, o
which is in contrast to that of the chemical reaction. ST N

1

S ol
Before concluding this section, we should refer to the _ 06 . -
effect of randomness or noise of traffic flow given in Egs. V(t)
(3.4) and(3.5), on achievement of the local-equilibrium hy- 0.4

pothesis. In Fig. 13, we show the time evolution of the en-
tropy productionP;,¢, considering the effect of randomness

or noise withq=0.2, for initial vehicle densitiep,=0.166 02—

and p,=0.960. In this figure, we can find decrease of the

vibratory structures. Moreover, in Fig. 14, it is shown a 0

phase trajectory om,-p, plane for the same initial vehicle 0 0.2 04 06 08 1
density. We can find structure such as the limit cycle around p(t)

the equilibrium point, which is altered by the effect of ran-

domness or noise. These results suggest restoration of the FIG. 14. The phase trajectory anp plane forq=0.2 with
local-equilibrium hypothesis. We can consider that the restoreal-time information provided. The open circle and the solid one
ration originates from the nondeterministic deceleration of arrepresent the trajectory in each route.
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of individual vehicles due to the instantaneous circulation offar from equilibrium, and one-dimensional model, in particu-
the state of traffic flow through a medium of information. lar, is solved exactly{47,48. In our model, therefore, it
The breakdown of the local-equilibrium hypothesis causesnight be possible to utilize the exact treatment, e.g., the
conflict in the relation between the average velocity and th@ethe ansatz49] and the free fermion, which succeeds in
vehicle density. This is the origin of the characteristic non-modeling one-dimensional spin or electron systems.
linear feedback of the system, by which backward flow is  Finally, we refer to phase transitions of the system. The
driven against the gradient of the vehicle density. As a resulighase transitions in our model can be characterized by the
complex structures of order, i.e., the dissipative structuresprovided information(contents, way of provision topology
are created spontaneously, involving finite entropy producof a network of roads with multi-intersections, and the
tion of traffic flow. |nCidenta”y, the effect of randomness or boundary ConditionS, as well as vehicle density_ In particu]ar,
noise in traffic flow works to restore the |Oca|-equi|ibrium the existence Of So_ca”ed boundary_induced phase transi_
hypothesis. _ tions have been demonstrated by computer simulations and
The contrastive study between the analysis from the pefexact calculations of the one-dimensional model with the
spective of statistical physics and the computer simulatiorbpen boundary conditior{g}7,50-52. In these models, im-
based on CA revealed that the breakdown of the localpalance of insertion and removal of a vehicle at the boundary
equilibrium hypothesis is essential in the dynamics of traffichreaks the translational invariance and brings a variety of
flow with the provision of real-time information. For the sys- stationary states with a nontrivial density profile. It indicates
tem to Work, |t needS theoretical treatment of the d|SS|pat|0rihat the boundary Conditions p|ay an important part in Char-
flow, e.g., non-Fickian diffusion for the irreversible traffic acterization of nonequilibrium systems. In our model, a com-

flow between routes. Fortunately, there have already beepination of different boundary conditions in each route is
several studies on the extended thermodynamics beyond th&pected to bring a variety of states.

local-equilibrium hypothesis, where the irreversible process

with a rapid change in spadéme) disrupts the local equi-

librium [45,.46._Furthermore., we can point out that the ASEP ACKNOWLEDGMENT

(asymmetric simple exclusion procgswodel has another

potentiality of theoretical treatment of the system. The ASEP The author wishes to thank T. Katayama for many helpful
model is the simplest prototype of interacting systems driverdiscussions and comments.
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